CEMI and meaning

bindingJohnjoe McFadden has followed up the paper on his conscious electromagnetic information (CEMI) field which we discussed recently with another in the JCS – it’s also featured on MLU, where you can access a copy.

This time he boldly sets out to tackle the intractable enigma of meaning. Well, actually, he says his aims are more modest; he believes there is a separate binding problem which affects meaning and he wants to show how the CEMI field offers the best way of resolving it. I think the problem of meaning is one of those issues it’s difficult to sidle up to; once you’ve gone into the dragon’s lair you tend to have to fight the beast even if all you set out to do was trim its claws; and I think McFadden is perhaps drawn into offering a bit more than he promises; nothing wrong with that, of course.

Why then, does McFadden suppose there is a binding problem for meaning? The original binding problem is to do with perception. All sorts of impulses come into our heads through different senses and get processed in different ways in different places and different speeds. Yet somehow out of these chaotic inputs the mind binds together a beautifully coherent sense of what is going on, everything matching and running smoothly with no lags or failures of lip-synch. This smoothly co-ordinated experience is robust, too; it’s not easy to trip it up in the way optical illusions so readily derail up our visual processes. How is this feat pulled off? There are a range of answers on offer, including global workspaces and suggestions that the whole thing is a misconceived pseudo-problem; but I’ve never previously come across the suggestion that meaning suffers a similar issue.

McFadden says he wants to talk about the phenomenology of meaning. After sitting quietly and thinking about it for some time, I’m not at all sure, on the basis of introspection, that meaning has any phenomenology of its own, though no doubt when we mean things there is usually some accompanying phenomenology going on. Is there something it is like to mean something? What these perplexing words seem to portend is that McFadden, in making his case for the binding problem of meaning, is actually going to stick quite closely with perception. There is clearly a risk that he will end up talking about perception; and perception and meaning are not at all the same. For one thing the ‘direction of fit’ is surely different; to put it crudely, perception is primarily about the world impinging on me, whereas meaning is about me pointing at the world.

McFadden gives five points about meaning. The first is unity; when we mean a chair, we mean the whole thing, not its parts. That’s true, but why is it problematic? McFadden talks about how the brain deals with impossible triangles and sees words rather than collections of letters, but that’s all about perception; I’m left not seeing the problem so far as meaning goes. The second point is context-dependence. McFadden quite rightly points out that meaning is highly context sensitive and that the same sequence of letters can mean different things on different occasions. That is indeed an interesting property of meaning; but he goes on to talk about how meanings are perceived, and how, for example, the meaning of “ball” influences the way we perceive the characters 3ALL. Again we’ve slid into talking about perception.

With the third point, I think we fare a bit better; this is compression, the way complex meanings can be grasped in a flash. If we think of a symphony, we think, in a sense, of thousands of notes that occur over a lengthy period, but it takes us no time at all. This is true, and it does point to some issue around parts and wholes, but I don’t think it quite establishes McFadden’s point. For there to be a binding problem, we’d need to be in a position where we had to start with meaning all the notes separately and then triumphantly bind them together in order to mean the symphony as a whole – or something of that kind, at any rate. It doesn’t work like that; I can easily mean Mahler’s eighth symphony (see, I just did it), of whose notes I know nothing, or his twelfth, which doesn’t even exist.

Fourth is emergence: the whole is more than the sum of its parts. The properties of a triangle are not just the properties of the lines that make it up. Again, it’s true, but the influence of perception is creeping in; when we see a triangle we know our brain identifies the lines, but we don’t know that in the case of meaning a triangle we need at any stage to mean the separate lines – and in fact that doesn’t seem highly plausible. The fifth and last point is interdependence: changing part of an object may change the percept of the whole, or I suppose we should be saying, the meaning. It’s quite true that changing a few letters in a text can drastically change its meaning, for example. But again I don’t see how that involves us in a binding problem. I think McFadden is typically thinking of a situation where we ask ourselves ‘what’s the meaning of this diagram?’ – but that kind of example invites us to think about perception more than meaning.

In short, I’m not convinced that there is a separate binding problem affecting meaning, though McFadden’s observations shed some interesting lights on the old original issue. He does go on to offer us a coherent view of meaning in general. He picks up a distinction between intrinsic and extrinsic information. Extrinsic information is encoded or symbolised according to arbitrary conventions – it sort of corresponds with derived intentionality – so a word, for example, is extrinsic information about the thing it names. Intrinsic information is the real root of the matter and it embodies some features of the thing represented. McFadden gives the following definition.

Intrinsic information exists whenever aspects of the physical relationships that exist between the parts of an object are preserved – either in the original object or its representation.

So the word “car” is extrinsic and tells you nothing unless you can read English. A model of a car, or a drawing, has intrinsic information because it reproduces some of the relations between parts that apply in the real thing, and even aliens would be able to tell something about a car from it (or so McFadden claims). It follows that for meaning to exist in the brain there must be ‘models’ of this kind somewhere. (McFadden allows a little bit of wiggle room; we can express dimensions as weights, say, so long as the relationships are preserved, but in essence the whole thing is grounded in what some others might call ‘iconic’ representation. ) Where could that be? The obvious place to look is in the neurons. but although McFadden allows that firing rates in a pattern of neurons could carry the information, he doesn’t see how they can be brought together: step forward the CEMI field (though as I said previously I don’t really understand why the field doesn’t just smoosh everything together in an unhelpful way).

The overall framework here is sensible and it clearly fits with the rest of the theory; but there are two fatal problems for me. The first is that, as discussed above, I don’t think McFadden succeeds in making the case for a separate binding problem of meaning, getting dragged back by the gravitational pull of perception. We have the original binding problem because we know perception starts with a jigsaw kit of different elements and produces a slick unity, whereas all the worries about parts seem unmotivated when it comes to meaning. If there’s no new binding problem of meaning, then the appeal of CEMI as a means of solving it is obviously limited.

The second problem is that his account of meaning doesn’t really cut the mustard. This is unfair, because he never said he was going to solve the whole problem of meaning, but if this part of the theory is weak it inevitably damages the rest.  The problem is that representations that work because they have some of the properties of the real thing, don’t really work.  For one thing a glance at the definition above shows it is inherently limited to things with parts that have a physical relationship. We can’t deal with abstractions at all. If I tell you I know why I’m writing this, and you ask me what I mean, I can’t tell you I mean my desire for understanding, because my desire for understanding does not have parts with a physical relationship, and there cannot therefore be intrinsic information about it.

But it doesn’t even work for physical objects. McFadden’s version of intrinsic information would require that when I think ‘car’ it’s represented as a specific shape and size. In discussing optical illusions he concedes at a late stage that it would be an ‘idealised’ car (that idealisation sounds problematic in itself); but I can mean ‘car’ without meaning anything ideal or particular at all. By ‘car’ I can in fact mean a flying vehicle with no wheels made of butter and one centimetre long  (that tiny midge is going to regret settling in my butter dish as he takes his car ride into the bin of oblivion courtesy of a flick from my butter knife), something that does not in any way share parts with physical relationships which are the same as any of those applying to the big metal thing in the garage.

Attacking that flank, as I say, probably is a little unfair. I don’t think the CEMI theory is going to get new oomph from the problems of meaning, but anyone who puts forward a new line of attack on any aspect of that intractable issue deserves our gratitude.

The CEMI Theory

Johnjoe McFaddenBitbucket Susan Pockett isn’t the only person who thinks consciousness is basically an electromagnetic field. Johnjoe McFadden put forward a similar theory back in 2000 and his version has some advantages. There is a short account of the theory on his own website at the University of Surrey, with the two papers which flesh it out more fully. In his view, the endogenous electromagnetic (em) field produced by the human brain contains the same information as the neurons, but in a form which is analogue, integrated and distributed; all characteristics which seem to be shared by consciousness and not by the digital, discrete activity of the neurons themselves. His version of the theory steers well clear of epiphenomenalism and all its problems: the em field arises from neuronal activity in a normal way and has straightforward causal effects on the firing of neurons in its turn.

He concedes that the very small charges involved may mean that quantum effects are relevant; but quantum mechanics plays no special part in the theory and he does not rely on strange quantum effects to explain the strange properties of consciousness. It does seem, however, that his theory can clarify a lot of different problems. The distinction between conscious and unconscious action, for example, is simply a matter of whether the em field was, or was not, playing a decisive role at the time. As we drive along the road, our over-learned responses produce robust patterns of firing in the neurons which require no intervention from the em field; but if we hit a novel situation our neuronal response becomes confused and less co-ordinated, and the subtle influence of the em field takes over – we begin to think about what we are doing again.
BlandulaThat’s all very well – but we don’t stop thinking altogether while we’re driving. If our mind wanders, we start thinking about something else. If McFadden is right, these other thoughts must be coming from neuronal activity too, mustn’t they? So he thinks that in that case the electromagnetic field will be most influenced, not by the strongest patterns of firing, but by weaker ones? That doesn’t make much sense. If his theory were right, it wouldn’t be that our mind wanders – we’d suddenly find that our actions had gone terrifyingly out of conscious control every time a habitual pattern of behaviour kicked in.
Bitbucket No, no. How could we be terrified by something which, by definition, we have stopped paying attention to? Besides, the contents of consciousness are not decided merely by the largest electrical influence – I’ll explain that in a moment. The theory also offers a convincing explanation of qualia. It would be perfectly possible for our brains to run unconsciously through pure neuronal computation, taking account of sensory inputs and modifying behaviour accordingly – but it is the extra buzz of em activity which gives them their phenomenal qualities, engaging them in the process of consciousness. This view has the advantage of setting qualia apart from the routine causality of mental processes without rendering them irrelevant. McFadden thinks fading and absent qualia are perfectly possible; but at the same time a person or robot without qualia would be readily distinguishable from a fully conscious person. McFadden doesn’t think, incidentally, that artificial consciousness is impossible, if the machine were constructed in the right way. There are fascinating results here from Sussex University. A neural network was trained to distinguish two tones: once trained it emerged that some of the cells which were essential to performing the task were not actually connected to the rest! The only explanation is that they were contributing to the performance of the network through some field effect – very much as the em field hypothetically would do. The implication is that this network had a dim, restricted form of phenomenal experience.
Blandula I simply don’t see why we should assume that an electromagnetic ‘buzz’ has anything more to do with qualia and actual experiences than the firing of neurons (or any other physical process). The problem is that physical processes and real experiences are as different as chalk and cheese, and substituting one physical process for another makes no difference whatever.
Bitbucket If you take that line, you’re simply making the problem unanswerable by definition. But anyway, McFadden’s theory also offers an obvious solution to the issue of free will. The problem with free actions is that they seem to come out of nowhere; well, the truth is that come out of the em field. They really are exceptions to the underlying neuronal causal process, but there’s nothing spooky or magic about them: they are perfectly normal results of normal physical processes.
BlandulaThe theory seems incomplete to me. After all, the brain (and the rest of the body) is full of activity which generates electromagnetic fields. Why should only some of them, on this reading, be conscious? For that matter, why aren’t ambient electromagnetic fields, like that of the Earth itself, conscious? Why don’t television broadcasts have minds of their own, and given the strength of them, why don’t they over-ride our conscious thoughts? At least Susan Pockett acknowledges that only certain kinds of patterns of activity can be conscious.

Bitbucket First, it’s obvious that a degree of complexity is necessary: no one supposes a simple electromagnetic field is automatically conscious. Second, the brain is actually rather well insulated from outside fields. Where magnetic fields are strong enough and targeted in the right place, they undoubtedly do disrupt mental activity. Although there is a difference here between Pockett and McFadden, he accepts that not all field effects arising from the brain are the same. He specifies that only those which eventually influence motor neurons are to be regarded as conscious.
Blandula>Why only those? it seems a very arbitrary distinction. And at the time some field event takes place, you can’t tell for sure whether it will set off a chain of events that impinges on motor neurons, can you? But it must either be conscious or not at the time it happens, surely?

BitbucketYes, of course. The distinction is a practical one which could no doubt be sharpened up theoretically: the basic point is clearly that we’re talking about reportable processes in some sense. But we still haven’t touched on possibly the strongest advantage of the theory, namely that it also deals with the binding problem. It has always been a mystery how the different bits of data from different senses get bound together into a coherent, consistent account of reality: but if there is an overarching em field which picks up neuronal influences from all the senses and transmits the combined result instantly over the brain, the solution is clear.

Blandula I don’t see that. Part of the binding problem is how processes which run at different speeds are co-ordinated: how does an instant field cope with that? And it seems to me that a single field would bind things together too much: if that’s where our view of reality comes from it would all be hopelessly melted together in an incoherent buzz. It is of the essence that the right things get bound together in the right way, not just instantly smudged together.
What really puts me off the theory, though, is that it seems like another blow in favour of electricity. We’ve always suffered from treating the brain as if it were made of copper wire, when it’s perfect clear that subtle chemical effects are absolutely crucial. In fact, I’d say one of our big problems here is that we draw a major distinction between physics and chemistry which Nature simply doesn’t recognise.

Bitbucket There’s an element of truth in that, but I think McFadden’s theory is a corrective to the ‘copper-wire’ view, not a reinforcement of it. He points out that these effects exist – ephaptic coupling of nerve activity through electromagnetic fields is an established fact – and surely they need to be considered.

Blandula The trouble with those ephaptic effects is that, as I understand it, they are mainly associated with disorders, like tinnitus. They’re like the sort of interference you would sometimes get between old-fashioned phone wires because of induction; unwanted signals in a system which was designed to work without them. After all, neurons go to great lengths to connect up with each other, often at great distances; surely direct effects from an em field are just going to be unhelpful noise.
The bottom line here is that McFadden (and Pockett) want electromagnetism to do what the spirit does in traditional accounts, but it just isn’t up to the job.

Bitbucket I see it as a strength of the theory that it sits well with intuitive and traditional ideas about the way the mind works, while requiring nothing but ordinary mainstream science to sustain it. One of its virtues is that it is amenable to experimental testing, and I have no doubt that over time evidence will accumulate. What I’d really like to see is an AI project in parallel, seeing whether there aren’t practical advantages to the kind of set-up McFadden describes. Unfortunately I don’t think this is happening at the moment.